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Abstract We propose a new distributed algorithm for detecting generalized dead-
locks in distributed systems. It records the consistent snapshot of distributed Wait-For
Graph (WFG) through propagating the probe messages along the edges of WFG. It
then reduces the snapshot by eliminating the unblocked processes to determine the
set of deadlocked processes. However, the reducibility of each blocked process is
arbitrarily delayed until a node collects the replies in response to all probes, unlike
the earlier algorithms. We also prove the correctness of the proposed algorithm. It
has a worst-case time complexity of 2d time units and the message complexity of
2e, where d is the diameter and e is the number of edges of the WFG. The signifi-
cant improvement of proposed algorithm over other algorithms is that it reduces the
data traffic complexity into constant by using fixed sized messages. Furthermore, it
minimizes additional messages to resolve deadlocks.

Keywords Distributed systems · Generalized deadlocks · Wait-For graph ·
Deadlock detection · Deadlock resolution

1 Introduction

Deadlock is an important resource management problem in distributed systems, since
it reduces the throughput by minimizing the available resources. In general, deadlock
is defined as a system state in which every process in a set is waiting indefinitely for
other processes in the same set. The interdependency among the distributed processes
is commonly represented by a directed graph known as Wait-For Graph (WFG) [7].
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In the WFG, each node represents a process and an arc represents dependency re-
lation between the processes. Based on the underlying resource request model, the
distributed deadlock detection algorithms are classified into single Resource model,
OR model, AND model and P out-of Q model and so on [5]. In the AND model,
a process requires all requested resources to proceed the execution, whereas in the
OR model, a process requires only few resources among the requested resources to
carry out the execution. However in the P out-of Q model, every process requires
“P” resources among “Q” to precede the execution. Since AND and OR model are
the special case of P out-of Q model, they are also called as the generalized model.
A deadlock associated with the P out-of Q model is referred as the generalized dead-
locks. The generalized deadlock occurs in many areas such as resource allocation in
distributed operating systems, communicating processes and quorum consensus al-
gorithm for distributed databases [11, 15]. The AND and OR deadlock are detected
by examining the existence of cycles and knot in the global WFG respectively. But
the presence of cycle or knot is insufficient to determine a deadlock in the generalized
model.

Very few algorithms have been proposed to detect and resolve generalized dead-
locks in the literature. Most of the existing algorithms have used diffusion computa-
tion technique [1–3], in which a special process called “initiator” sends one or more
messages to its descendants. If a process receives a message, it sends a reply. When
every process is idle and waiting for other processes, the initiator terminates the ex-
ecution and determines a deadlock based on the replies. The generalized deadlock
detection algorithms are grouped into two major categories namely centralized and
distributed algorithms based on the existence of WFG. In the centralized algorithm
[13, 16, 17], the initiator constructs the WFG based on the information in the replies.
However, the WFG constitutes multiple sites in distributed algorithms [6, 9, 11, 12,
15]. We do not consider centralized algorithms in this paper.

1.1 Proposed work

We present a new decentralized algorithm for detecting generalized deadlock in dis-
tributed systems. The initiator of the proposed algorithm builds the Distributed Span-
ning Tree (DST) of WFG through propagating probe (CALL) messages along the
outgoing edges of WFG in the forward phase. As the replies (REPORT) are sent
backwards to the initiator in the backward phase, the algorithm determines the re-
ducibility of a blocked node. Thus the reducibility of a blocked node is arbitrarily
delayed until it receives a reply in response to all probes (CALL messages). An un-
blocked process initiates the reduction of distributed snapshot by eliminating all re-
ducible nodes during the backward phase. Finally, the processes that have not been
reduced in the snapshot are declared as deadlocked processes. We formally prove the
correctness of proposed algorithm. It has a worst case time complexity of 2d time
units and the message complexity of 2e, where d is the diameter and e is the number
of edges of the WFG. However, it reduces the data traffic complexity into constant by
using fixed sized messages as compared to the existing distributed algorithms.
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1.2 Differences between the proposed algorithm and earlier algorithms

In the proposed algorithm, the replies are not carrying the unblocking conditions and
the reducibility of a node is not delayed until the termination of algorithm as in [15].
Furthermore, it does not construct WFG partially at the initiator to find out a victim.
Unlike in [11], the termination of the algorithm is not based on weight distribution
technique and it does not require additional rounds of messages to resolve deadlocks.

This paper is organized as follows. Section 2 describes the related work. Section 3
describes the underlying computational model and the problem definition. Section 4
presents the proposed algorithm and its correctness proof. Section 5 does the perfor-
mance analysis and compares it with the earlier algorithms. Section 6 concludes.

2 Related works

The distributed algorithms ‘record and reduce’ the global WFG in a single or two
phases. In the two phase algorithms [6, 9, 12], the WFG is recorded through prop-
agating the probes to all processes in initiator’s reachable set in the first phase. It
reduces the unblocking processes in the second phase to find out a deadlock. How-
ever, these two phases are overlapped in the single phase algorithms [11, 15]. In [6],
the initiator propagates the probe messages to record the WFG in the first phase and
collects the replies from the unblocked processes in the second phase. The existence
of deadlock is implied when the replies are insufficient to unblock the initiator. Here,
the second phase is nested within the first phase. It exchanges 4e messages in 4d

time units to find out whether the initiator is in deadlock or not. The algorithm in
[9] uses an effective termination technique to detect the end of the first phase before
initiating the second phase, unlike in [4]. However, it uses 6e messages within 3d + 1
time units to detect a deadlock. The algorithm in [12] arranges the processes in the
distributed snapshot into logical ring, and circulates the probes (token) among them.
If the processes do not change their states in two consecutive rounds, it declares a
deadlock. It uses weak termination technique as compared to the earlier algorithms.
It detects a deadlock using 1

2n2 messages in 4n time units, where n is the number
of nodes in the WFG. Unlike in [6, 9, 12], the algorithm in [11] records as well as
reduces the WFG simultaneously to find out the presence of deadlock. The initiator
records all the processes in its reachable set in outward sweep, and eliminates the
process that grants the resources in the inward sweep. It detects the generalized dead-
lock through 4e − 2n + 4l messages within 2d time units. The algorithm in [15] uses
lazy evaluation technique to delay the reduction of any unblocked processes until the
initiator terminates the execution. It detects deadlock using 2e messages in 2d time
units. In addition, the initiator retains the resource requirement of blocked processes
to resolve the deadlock. Thus, [15] avoids additional e messages.

3 System model and problem definition

The system consists of n processes, where each has unique identity. The processes are
communicating through a logical communication channel by message passing. There
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is no shared memory in the system. The messages are delivered at the destination in
the same order as sent by the sender, with arbitrary but finite delay. The messages are
neither lost nor duplicated and the entire system is fault-free. The events in the system
are classified into internal and external events, and they are time stamped using logi-
cal clock [1]. They are further classified into computation events and control events.
The computation event triggers the computational messages such as REQUEST, RE-
PLY, CANCEL and ACK due to the execution of applications. Whereas, the control
event generates the control messages including CALL and REPORT as a result of the
execution of deadlock detection algorithm.

In a generalized model, a process resource requirement is expressed as a predicate
involving the requested resources using logical AND OR operators. For example, a
process resource requirement A ∧ (B ∨ C) implies that it requires a resource from A

and a resource from either B or C. In this algorithm, the generalized resource require-
ment of a blocked process i is represented as a function Fi . Once a blocked process
i receives the replies from its descendants, it simplifies the function as follows. It
substitutes true if a process grants a resource and false if it denies it. When a process
i collects sufficient replies to make Fi as true, it immediately gets unblocked. Each
process i maintain its local state using the following data structure. The initial values
are given within the brackets.

t_blocki the logical time at which i was last blocked(0)
INi the set of tuples <k, t_blockk > where k is a process that is waiting for i and

t_blockk is the logical time at which k has sent its request to process i(φ)

OUT i set of processes for which process i is waiting since the last t_blocki (φ)

Fi the unblocking condition of process i

Hence, Domain(Fi) ⊆ OUT i . Each process j ∈ OUT i is referred as the successor
of i and each process j ∈ INi is referred as the predecessor of i. We use the ‘process’
and ‘node’ interchangeably throughout this paper.

When a process i blocks on pi out-of qi requests, it sends a REQUEST message to
qi processes. If it receives pi REPLY messages, it immediately sends qi − pi CAN-
CEL messages to withdraw its request and become active. Otherwise, a process is in
blocked state. Therefore, a process state is active or blocked at any instant. An ac-
tive process can send both communication and control messages while the blocked
process can send either control messages or ACK. A blocked process could not re-
quest additional resources and unblock abnormally. These two assumptions are essen-
tial to record consistent snapshot of distributed WFG. Whenever a process i receives
the REQUEST message from a blocked process j ∈ OUT i , it records the request
along with t_blocki in INi . A blocked process j then sends ACK message immedi-
ately to acknowledge the arrival of REQUEST message. Both communication and
control messages are properly time stamped according to [1] in order to synchronize
with corresponding messages.

The distributed snapshot comprises the local states of all processes in initiator’s
reachable set. It is formally defined as follows in [11].

Definition 1 A snapshot of process i is a collection of local states of all processes
reachable from it. A consistent snapshot records both the sending and receiving of
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REQUEST, REPLY and CANCEL message. If the receipt of the message exists in
the snapshot, the corresponding sending event must be recorded.

Definition 2 A node i is reachable from j iff there exists a directed path from i to j

in the WFG.

3.1 Problem statement

A generalized deadlock exists in the system iff the topology, which is given in Defi-
nition 3, exists in the WFG.

Definition 3 A generalized deadlock is a sub graph (D,K) of WFG (V,E) in which

1. (i) ∀i ∈ D, evaluate(Fi) = false ∧ D �= φ

2. (ii) ∀i ∈ V − D, evaluate(Fi) = true
3. (iii) ∀i ∈ D,∀j ∈ OUT i , no REPLY message is in underlying communication

channel from j to i.

Where, evaluate(Fi) = evaluate(Fi/∀j∈OUTi,j←evaluate(Fj)) and evaluate(Fi) = true
for an active node. Hence, each process in a set D is blocked permanently.

3.2 Correctness criteria

The correctness of any deadlock detection algorithm depends on the following two
criteria.
Liveness: The algorithm detects the deadlock within a finite time after its formation
in the underlying system.
Safety: The algorithm reports the deadlock iff it actually exists in the system.

4 The proposed algorithm

When a node i blocks on a pi out-of qi requests, it initiates the deadlock detection al-
gorithm. The initiator of the algorithm records the consistent snapshot of distributed
WFG by propagating the CALL messages along the outgoing edges of WFG. When
the replies are propagated backwards to the initiator, the algorithm reduces the snap-
shot to determine a deadlock. The proposed algorithm follows the method in [10, 11,
15] to handle the concurrent executions of the algorithm. According to the method,
the algorithm assigns a priority to each instance based on the initiator’s identifier and
the time at which it was blocked. It supports the execution of higher priority and sus-
pends the execution of lower priority instances in the conflicting nodes. Hence, each
initiator maintains its own snapshot to detect a deadlock. For simplicity, we focus
only on single instance execution of our algorithm.

4.1 An overview of the algorithm

When a node i initiates the deadlock detection algorithm, it builds a distributed span-
ning tree of distributed WFG by propagating CALL messages along the edges in the
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WFG. To describe in detail, the initiator i sends CALL message to each one of its
successors. When a blocked node receives the first CALL message, it becomes the
child of the sender and propagates CALL messages to its own successors and so on.
Thus, an edge through which each node receives the first CALL message induces a
distributed spanning tree in the WFG.

An unblocked node initiates the reduction of distributed snapshot by sending RE-
PORT message to the sender of CALL message immediately. But, a blocked node
delays to send a reply in response to CALL message until the arrival of REPORT
messages from all of its successors. When a blocked node receives all REPORT mes-
sages, it attempts to simplify the unblocking condition to determine its state. How-
ever, if a node sends the CALL message to any one of its own predecessor through a
back edge, it delays to simplify its unblocking condition until it receives the REPORT
from other successors. In such situations, it substitutes false for the node ids that does
not send REPORT message during the simplification. After simplifying the unblock-
ing condition, it sends its state to all predecessors through REPORT messages. This
process continues until the initiator determines its own state. If the unblocking condi-
tion of initiator is not simplified as true upon receiving the REPORT messages from
its successors, the algorithm declares a deadlock. And the nodes that have not been
reduced are declared as deadlocked.

In this algorithm, the deadlock detection as well as termination is incorporated
into a single process as in [14, 15]. Whenever a blocked node receives the REPORT
message in response to all CALL messages, it sends REPORT message to its prede-
cessors. This process continues until the initiator receives the REPORT message from
its own successors. The algorithm terminates once the initiator receives all REPORT
messages in response to CALL messages.

4.2 An explanation of the algorithm

When node i wants to find out whether it is deadlocked, it sends a CALL(i, i) mes-
sage to all its successors (outi ). The first parameter of the CALL message is id of
the node that propagates the message and the second parameter is the id of the ini-
tiator. When node j receives the CALL message from node i, it performs one of the
following actions.

1. If it is the first CALL message and node j is blocked, it sets its fatherj to i and
sends the CALL(j, initiator) message to all the nodes in outj .

2. If it has already received a CALL message (i.e., fatherj �= udef), it includes the
id of i in the set inj . It also reduces mj by one (mj = 0 implies that the node j

receives the CALL message from all its successors).
3. If node j is active, it sends REPORT(initiator, j, true, φ,φ) to node i. The first

parameter of the REPORT message is the id of the initiator. The second and third
parameter represents the id and the state of the node that sends the message re-
spectively. The fourth parameter is the id of the node that would be a victim in
case of deadlock and fifth parameter is the number of predecessors of a node vic-
tim. Since node j is active, it cannot be a victim. Therefore, the fourth and fifth
parameter value is set as φ in the message.
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4. If node j receives the CALL message through a phantom edge (i.e., i �∈ INj ), it
sends a REPORT(i, j, true, φ,φ) message immediately to node i.

Whenever node i receives the REPORT message, it reduces ni by one. Once it
receives the REPORT message from all its successors (i.e., ni = 0), it evaluates its
unblocking condition (fi). If fi is simplified as true, it sends the REPORT message to
its predecessors without changing the victim and |invictim| in the message. Otherwise,
it updates the fourth and fifth parameter of the message by comparing number of
its predecessors (|ini |) with |invictim|. If |ini | ≥| invictim|, it sets node i as victim and
sends REPORT(initiator, i, false, i, |ini |) to its predecessors. Else, it sends REPORT
(initiator, i, false, victim, |invictim|) to its predecessors.

In some cases, node i is waiting to receive the REPORT message from its own
predecessor j in response to its CALL message (i.e., when j ∈ ini ∧ j ∈ outi ) for
determining its state. In such cases, node i cannot send the REPORT message to its
predecessors including the node j . This problem is resolved as follows. When node i

receives the REPORT message, it reduces ni by one. In addition, it counts the number
of nodes that act as both predecessor and successor (loop). Therefore, it attempts to
simplify its unblocking condition (fi) at the time it has received ni -loop REPORT
messages. It then sends REPORT message to its predecessors. This will ensure that
any node that is reachable from the initiator does not wait indefinitely to determine
its state.

After receiving the REPORT message from all its immediate successors, the ini-
tiator evaluates its unblocking condition. If the unblocking condition of the initiator
is not simplified as true, the algorithm declares deadlock. In that case, the initiator
sends ABORT message to a node victim directly to resolve it.

4.3 Formal specification

The formal description of the proposed algorithm is presented below. The initial val-
ues are given inside the parenthesis.

4.4 An example

We now illustrate the algorithm with the help of an example shown in Fig. 1 [17]. Let
us consider the distributed WFG that spans six nodes labeled 1 to 6. Assume that node
1 initiates the deadlock detection algorithm and the messages are propagated in such
a way to induce a BFS distributed spanning tree. All the nodes except 6 are blocked.
The unblocking conditions of all blocked nodes are given as follows: F1 = 2 ∧ 3,
F2 = (4 ∧ 5) ∨ 6, F3 = 5,F4 = 5 ∨ 6 and F5 = 3 ∧ 6. Figure 2 shows the distributed
spanning tree induced by the algorithm.

Node 1 sends CALL(1,1) message to nodes 2 and 3 respectively. When node 2 re-
ceives the CALL from 1, it propagates the CALL(2,1) message to 4,5 and 6 respec-
tively. Similarly, node 3 sends CALL(3,1) message to 5. A node 4 sends CALL(4,1)
message to its successors 5 and 6, whereas node 5 sends CALL(5,1) message to
its own successors 3 and 6 in response to CALL message from node 2. When node
6 receives the CALL message from 2,4 and 5, it sends REPORT(1,6, true, φ,φ)

in response to CALL message. When node 5 receives the REPORT message from
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Data Structures of a node i

t_blocki : integer ← 0 /* time at when i was blocked */
initiatori : integer ← 0 /* initiator of the current instan-

ce */
ini : set of tuples < j, t_blockj >← φ /* nodes waiting for i∗/
outi : set of integers ← OUT i /* nodes for which i is waiting

for */
fi : AND-OR Expression /* Condition for i to unblock */
fatheri : integer ← 0 /* parent of i∗/
mi : integer ← 0 /* number of predecessors of i∗/
ni : integer ← |OUT i | /* number of successors of i∗/
Messages Formats
CALL (sender, initiator)
REPORT (initiator, sender, state, victim, |invictim|)
I. When a node i initiates the algorithm //Step I
initiatori := i;
fatheri := i;
mi := |INi |;

send CALL(i, i) to each process j ∈ OUT i;
II. On receiving CALL(j , initiatorj ) by node i

if (fatheri = udef ∧ |OUT i | > 0 ∧ j ∈ INi ) then /* Step II.1 tree edge */
fatheri := j ;
initiatori := initiatorj ;
outi := OUT i;
ini := ini ∪ {j}
fi := Fi;
ni := |OUT i |;
mi := |INi | − 1;

send CALL(i, initiatori ) to each process j ∈ outi;
if (fatheri = def ∧ |OUT i | > 0 ∧ j ∈ INi ) then /* Step II.2 non tree edge */

ini := ini ∪ {j}
mi := mi − 1;
if (mi > 0) then

loop := |INi ∩ OUT i |; // Number of nodes that act as
both predecessor & successors

if ((loop > 0) ∧((ni − loop) = 0)) then
send REPORT(initiatori , i, false, i, |ini |) to j;

if (|OUT i | = 0 ∧ j ∈ INi ) then
/* Step II.3 When unblocked
node i receives the CALL */

send REPORT(initiatorj , i, true, φ,φ) to j ;
if (j �∈ INi ) then /* Case II.4 phantom edge */

send REPORT(initiatorj , i, true, φ,φ) to j ;
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III. On receiving REPORT (initiatorj , j, state, victim, invictim) by node i

if (state = true) then
/*Step III.1 When node i receives the REPORT from an active node j∗/

outi := outi − {j};
endif
ni := ni − 1;
if (ni = 0) then

evaluate(initiatori , i, victim, invictim);
else

loop := |INi ∩ OUT i |;
if ((mi = 0) ∧ ((ni − loop) = 0)) then /* Step III.2 Resolving Loops */

evaluate(initiatori , i, victim, invictim);
endif

endif
IV. procedure evaluate(initiatori , i, victim, invictim)

begin
if ((i �= initiatori ) ∧ (evaluate(fi) = true)) then /*Step IV.1 node i is

reducible */
state := true;
send REPORT(initiatori , i, true, victim, invictim) to j ∈ ini;

else /* Step IV.2 node i is not
reducible */

if (|ini | ≥ |invictim|) then /*Selection of a victim */
send REPORT( initiatori , false, i, |ini |) to j ∈ ini;
else
send REPORT(initiatori , false, victim, invictim) to j ∈ ini;
endif

endif
if ((i = initiatori ) ∧ (evaluate(fi) = true)) then

No deadlock; exit; /* Step IV.3 Check the state
of initiator */

else
Declare Deadlock; send ABORT(initiatori ) to victim;

endif
end procedure
V. On receiving the ABORT message by node i

send the CANCEL message to withdraw its REQUEST message to j ∈ outi;
send the REPLY to j ∈ ini;
abort i; // the process ‘i’ is terminated

6, it sends REPORT(1,5, false,5,2) message to 2,3 and 4 respectively. A node
4 sends REPORT(1,4, true,5,2) to 2. Node 3 sends REPORT(1,3, false,3,2)

to 1. Upon receiving the REPORT messages from 4,5 and 6, node 2 sends
REPORT(1,2, true,5,2)message to 1. Since the REPORT message from 2 and 3 are
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Fig. 1 The Wait-For graph

Fig. 2 The distributed spanning
tree

insufficient to simplify the unblocking condition of node 1 into true, the algorithm
declares a deadlock. It then selects node 3 as victim to resolve a deadlock.

4.5 Deadlock resolution

The victim is selected based on the number of predecessors of deadlocked nodes in the
WFG. To be more specific, a process that unblocks maximum number of processes
in the underlying is chosen as a victim. It is achieved in the following manner. The
number of predecessors of each node is sent to its predecessors through the REPORT
message. Upon receiving the REPORT message, the value in the message is com-
pared with its own number of predecessors. It then sends the identity of a node that
has maximum number of predecessors through REPORT messages. This process con-
tinues until the initiator collects the replies from all its successors. When the initiator
detects a deadlock, it sends abort signal to the victim directly [8].
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4.6 Correctness proofs

Since we do not consider the execution of multiple instance of the algorithm, the
proofs to prove the correctness of single instance execution is presented using the
following theorems.

Theorem 1 The algorithm records the complete and consistent snapshot of distrib-
uted WFG.

Proof The completeness property ensures that the initiator of the algorithm sends
CALL messages to all the nodes in its reachable set. To prove, Let us consider a
node i, which initiates the algorithm. It diffuses the CALL messages to each one of
its successor j ∈ OUT i according to the Step I. Since <i, t_blocki >∈ inj , a node j

receives the CALL message from process i. If a node j is blocked, it forwards the
CALL message to its own successors by Step II.1. If an unblocked node j receives the
CALL message, it sends the REPORT message to i by Step II.3. Since the messages
are never lost according to our network assumption, all the nodes reachable from the
initiator i receives the CALL message. Thus, the snapshot is complete.

We now show that the algorithm records consistent snapshot as follows. Let us
consider the contrary that an edge (i, j) does not exist in the WFG. Such an edge
exists in the snapshot iff node j receives the CALL message from process i. It is
possible only if j ∈ OUT i and i ∈ inj . If an unblocked node j receives the CALL
message from node i, it sends REPORT message to node i by Step II.3.As a result,
the algorithm reduces the edge which is subsequently removed from the snapshot.
However, if a blocked node j receives the CALL message, the edge (i, j) is included
in the snapshot by Step II.2. Therefore, an edge(i, j) exist in the snapshot iff it exists
in the WFG. Thus, the contradiction is disproved. �

Theorem 2 The algorithm terminates within a finite time.

Proof By Step I, the initiator i sends CALL message to each one of its successor.
If a blocked node j receives the CALL message, it forwards CALL message to its
own successors by Step II.1. However, if an unblocked node receives the CALL mes-
sage, it sends a reply to the sender of message immediately by Step II.3. Whenever
a node receives the REPORT message, it reduces the required number of replies by
one according to the Step III. Once a blocked node collects the replies in response to
all CALL messages, it sends REPORT message to its predecessors by Step IV. This
process continues until the initiator receives the REPORT message from all its suc-
cessors. The initiator of the algorithm terminates the execution once it receives the
REPORT messages in response to all CALL messages. Thus, the theorem holds. �

Theorem 3 If a deadlock exists in the system, the algorithm detects it within finite
time.

Proof Assume that a deadlock D exists in the system. Let us consider a contrary
that the algorithm does not detect a deadlock D in the underlying system. Hence,
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there is a node i ∈ D, where evaluate(fi) = true exists in the snapshot. Since a
node i’is a member of deadlock D, it will be blocked forever according to the de-
finition of deadlock. However, if no such deadlock D exists in the system accord-
ing to our assumption, fi is evaluated as true during the simplification. Therefore,
evaluate(fi) = true and i �∈ D, which contradicts our assumption. If evaluate(fi) =
true, then fi consists of only those nodes that are not deadlocked in the system. Let
us consider a node j ∈ Domain(fi) and whose state determines the state of node i.
Since evaluate(fi) = true, evaluate(fj ) is also true. Similar to node i, there is at
least one node j ′ ∈ Domain(fj ) and whose state determines the state of node j ′.
By induction, there must exist a node n + 1 ∈ D such that n ∈ Domain(fn+1) and
evaluate(fn) = true. Since active nodes have true unblocking conditions by Step IV,
the algorithm does not evaluate(fi) as true during the simplification. So the algo-
rithm does not report i ∈ D which contradicts our assumption. Hence, the theorem is
proved. �

Theorem 4 The algorithm does not report any false deadlock.

Proof Let us prove this theorem using a contrary that the algorithm reports a deadlock
that does not exist in the system. It implies that there are some edges recorded in the
snapshot that have not existed in the system. Let us consider an edge (i, j) is one
among them. The edge exists in the snapshot iff node i sends CALL message to node
j by Step I or II.1. By Step I, the initiator sends CALL message to its successor j . If
it is executed the later step, a blocked node i sends CALL message to each one of its
successor including node j . If a node j sends REPLY to node i, this edge disappears
from the WFG. Therefore, it does not exist in the snapshot. Let us consider that (i, j)

is a tree-edge of distributed spanning tree induced by the algorithm. Upon receiving
the CALL message from node i, node j executes either step II.1 or II.3. If node j

executes Step II.3, it sends REPORT to node i which subsequently reduces the edge
(i, j). Hence, it will not exist in the snapshot. If node j is blocked in the WFG, it
executes the Step II.1 and eventually sends CALL message to its successor. Since
an edge does not in the WFG, node i must be reduced during the simplification.
Therefore, it should not exist in the snapshot. Let us now consider (i, j) is a non-
tree edge. Since the edge disappears from the WFG, node j must send REPLY to
node i at some time, say t . If node j receives the CALL message before t , it sends
REPORT message to node i once it determine its state by Step III. Since node j is
not deadlocked, the edge (i, j) is removed from the snapshot once it sends REPORT
message to node i by Step III. If node j receives the CALL from node i before t , it
sends REPORT message to node i by Step II.4. Hence it does not exist in the WFG.
Hence the algorithm records an edge iff it exists in the WFG. Thus the contradiction
is disproved, and the theorem is proved. �

5 Performance analysis

We compare the performance of the proposed algorithm with the existing algorithms
in terms of time, message, data traffic and space complexity. The time and message
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Table 1 Performance Comparison of Distributed Deadlock Detection algorithm in the worst Case Here,
S represents the total number of processes in the System, n represents the number of nodes, e represents
the number of edges and d represents the diameter of WFG (V,E)

Algorithm Delay Messages Message length

Bracha and Toueg [6] 4d 4e O(l)

Wang et al. [9] 3d + 1 6e O(l)

Brzezinski [12] S2 S2 O(n)

Kshemkalyani et al. [11] 2d + 2 4e − 2n + 2l O(l)

Kshemkalyani et al. [15] 2d 2e O(e)

Proposed Algorithm 2d 2e O(l)

complexity are measured based on the assumption that the transmission of logical
messages between any two processes takes one time unit. Let n be the number of
processes, e be the number of edges and d be the diameter of the WFG. In this algo-
rithm, the CALL messages are sent along the outgoing edges of WFG in the forward
phase and the REPORT message are sent backwards to the initiator in the backward
phase. Hence the message complexity of this algorithm is 2e. Since the initiator deter-
mines a deadlock once it has received the REPORT messages from all its successors,
the worst-case time complexity of our algorithm is 2d . The space complexity in the
worst-case will not exceed O(n2). However, it minimizes the data traffic complexity
into a constant by using fixed sized messages. The Table 1 compares the performance
of proposed algorithms with other algorithms.

We have compared the performance of proposed algorithm with that of Bracha’s
algorithm [6] and Ajay’s algorithm [15]. In the simulation, programs are event
driven and written in JAVA. As in [17], the events are classified into process ar-
rival/departure, message receipts for communication and message receipt of com-
putational messages. The simulator maintains all data structures including Wait-For
Graph to support the execution of each algorithm. The system has ‘L’ resources and
each one of them is associated with an exclusive lock. The resources are evenly dis-
tributed over sites. Upon entering into the system, a process spends Tpre time units
before making process size (PS) resource requests. It requests a resource either local
or remote based on the probability Pl . If a process needs a remote resource, it takes
Tm time units to send a REQUEST message. The Lock Manager determines whether
a lock can be granted. If the resource is idle, lock Manager allocates the resource
to the process; otherwise, if the resource is already held by another process, the re-
sulting process sends a REQUEST message, and includes the process identifier that
holds a lock into the successor list. Once a process acquires PS locks, it becomes
active and continues its execution for Texec time for each acquired resources. At the
end of the execution, it releases all the acquired resources. Termination of a process
brings a new process in the site immediately. Hence, the system has fixed number of
processes at any instant. At the same time, a process blocks continuously until all the
requested locks are granted. When a lock is released, the lock manager selects one
of its successors as a new holder of the lock. It then sends a UPDATE message to
inform all other processes that are waiting for a resource. Upon receiving a UPDATE
message, a process modifies its successor list by adding the current holder instead
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Table 2 System parameters

Parameter Description Mean

value

L Total Number of Locks 300

PS Process Size 1–10

Tpre Execution time of a process before making PS resource requests 60

Texec Execution time of a process to utilize each acquired resource 30

Pl Probability of a process to make request for a resource residing at local site 0.1

Tm Transmission time of a message 20

Tdlmsg Time require to execute a routine corresponding to a deadlock detection message 1.5

Fig. 3 Deadlock duration

of previous holder. A deadlock detection algorithm is executed at a site upon receiv-
ing a computational message from other sites or upon initiation of the algorithm. We
assume that, the system takes Tdlmsg time for a process to execute a deadlock de-
tection module regardless of the message type and the algorithm. We have assessed
the performance of all algorithms under the same initial conditions. Table 2 presents
the system parameter values used by the simulation. To increase the degree of lock
conflicts, a relatively small number of resources in comparison with the process size
have been chosen.

We have used the following metrics for quantitative comparison: Deadlock Du-
ration which is the time taken by the algorithm to detect a deadlock after it hap-
pens. Message traffic is the number of messages needed to detect deadlocks. Message
length is the size of deadlock detection messages. Deadlock Resolution time is the
time when a deadlock occurs until it is resolved by the algorithm. Experiments have
been carried out in both the light and heavily loaded environments by varying the
multiprogramming level ranging from 10 to 40. Each simulation result is the mean
value obtained after running the programs 20 times for the same set of input parame-
ter. Each simulation was run for 100000 time units.

Figure 3 shows the deadlock duration plotted as a function of the multiprogram-
ming level of the system. As shown in the figure, mean deadlock detection duration
resulting from proposed algorithm is less than that from Bracha’s algorithm [6]. It is
observed that deadlock duration of Ajay’s algorithm [15] and our algorithm is almost
same for higher MPL values, which is consistent with complexity comparison pre-
sented in Table 1. It is also observed that the deadlock detection duration increases
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Fig. 4 Message traffic

Fig. 5 Message length

with MPL until the number of processes reaches 30, and then tapers to flat. The rea-
son behind this is due to the increase of simply blocked nodes with MPL.

Figure 4 shows the mean number of deadlock detection messages generated per
algorithm execution with varying multiprogramming levels. As shown in figure,
Bracha’s algorithm [6] passes 1.5 times more messages than proposed algorithm for
higher MPL values. It is observed that proposed algorithm and [15] need almost same
number of messages to detect deadlocks according to the congruence with the theo-
retical expectation.

Figure 5 shows the mean length of deadlock detection messages in terms of num-
ber of node identifiers for each algorithm. It is observed that, as the MPL is increased
in the system, the message length of Ajay’s algorithm [15] is also increased. How-
ever, the message length of proposed algorithm and [6] is a constant. If the system is
in deadlock, the algorithm in [6] aborts the initiator which may not resolve the de-
tected deadlock. On the contrary, the algorithm in [15] selects a victim by invoking
additional procedure like centralized algorithms. Since the initiator of proposed algo-
rithm identifies an appropriate victim without invoking any additional procedure, the
deadlock resolution time is very less in proposed algorithm as compared to [15]. It
is observed that a deadlocked process having highest predecessor is aborted and it is
more likely that abortion of single process might resolve a deadlock. It’s another key
contribution of proposed algorithm.

6 Conclusion

We have presented a new distributed deadlock detection and resolution algorithm in
generalized model and proved its correctness. In this proposed algorithm, the probes
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are propagated along the edges of WFG in the forward phase and the replies are sent
backwards to the initiator in the backward phase. The reducibility of a blocked node
is decided once it has received the REPORT messages from all its descendants un-
like the earlier algorithms. If the initiator is not reduced at the end of termination,
the algorithm declares a deadlock. It is shown that the message complexity of 2e and
time complexity of 2d is equal or better than the existing algorithms. The notable im-
provement of this algorithm is that it significantly reduces the message length without
using any explicit techniques. The data traffic complexity of proposed algorithm is
optimum as compared to any decentralized algorithms. Since the initiator identifies
the appropriate victim during the propagation of replies, it significantly minimizes the
message overhead associated with deadlock resolution. Our simulation result reveals
that the proposed algorithm performs better than the existing decentralized algorithms
in terms of message length and deadlock resolution.
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